Magnitude and direction of DNA bending induced by screw-axis orientation: influence of sequence, mismatches and abasic sites
نویسندگان
چکیده
DNA-bending flexibility is central for its many biological functions. A new bending restraining method for use in molecular mechanics calculations and molecular dynamics simulations was developed. It is based on an average screw rotation axis definition for DNA segments and allows inducing continuous and smooth bending deformations of a DNA oligonucleotide. In addition to controlling the magnitude of induced bending it is also possible to control the bending direction so that the calculation of a complete (2-dimensional) directional DNA-bending map is now possible. The method was applied to several DNA oligonucleotides including A(adenine)-tract containing sequences known to form stable bent structures and to DNA containing mismatches or an abasic site. In case of G:A and C:C mismatches a greater variety of conformations bent in various directions compared to regular B-DNA was found. For comparison, a molecular dynamics implementation of the approach was also applied to calculate the free energy change associated with bending of A-tract containing DNA, including deformations significantly beyond the optimal curvature. Good agreement with available experimental data was obtained offering an atomic level explanation for stable bending of A-tract containing DNA molecules. The DNA-bending persistence length estimated from the explicit solvent simulations is also in good agreement with experiment whereas the adiabatic mapping calculations with a GB solvent model predict a bending rigidity roughly two times larger.
منابع مشابه
ssDNA Pairing Accuracy Increases When Abasic Sites Divide Nucleotides into Small Groups
Accurate sequence dependent pairing of single-stranded DNA (ssDNA) molecules plays an important role in gene chips, DNA origami, and polymerase chain reactions. In many assays accurate pairing depends on mismatched sequences melting at lower temperatures than matched sequences; however, for sequences longer than ~10 nucleotides, single mismatches and correct matches have melting temperature dif...
متن کاملDetection of single base mismatches and abasic sites using phenanthridinium as an artificial DNA base and charge donor.
Combining the fluorescence properties of phenanthridinium as an artificial DNA base together with DNA-mediated charge transfer processes allows the homogeneous detection of DNA base mismatches and abasic sites.
متن کاملDNA bending by Fos-Jun and the orientation of heterodimer binding depend on the sequence of the AP-1 site.
Interactions among transcription factors that bind to separate promoter elements depend on distortion of DNA structure and the appropriate orientation of transcription factor binding to allow juxtaposition of complementary structural motifs. We show that Fos and Jun induce distinct DNA bends at different binding sites, and that heterodimers bind to AP-1 sites in a preferred orientation. Sequenc...
متن کاملRecognition of abasic sites and single base bulges in DNA by a metalloinsertor.
Abasic sites and single base bulges are thermodynamically destabilizing DNA defects that can lead to cancerous transformations if left unrepaired by the cell. Here we discuss the binding properties with abasic sites and single base bulges of Rh(bpy)(2)(chrysi)(3+), a complex previously shown to bind thermodynamically destabilized mismatch sites via metalloinsertion. Photocleavage experiments sh...
متن کاملThe endonuclease isoschizomers, SmaI and XmaI, bend DNA in opposite orientations.
The SmaI and XmaI endonucleases are imperfect isoschizomers that recognize the sequence CCCGGG. SmaI cleaves between the internal CpG to produce blunt end scissions whereas XmaI cleaves between the external cytosines to produce a four base, five prime overhang. Each of the endonucleases forms stable, specific complexes with DNA in the absence of magnesium. Circular permutation analyses of the p...
متن کامل